Introduction to Robotics
Course 501: Introduction to Robotics
Covers the background for a detailed study of robot maintenance. Introduces the trainee to the basics of robotics, using clear, easy-to-follow language to take the mystery out of this growing technology.
TPC Training Systems is authorized by IACET to offer 0.7 CEUs for this program.
Lesson 1 - Robotics in Automated Manufacturing
Topics:
Evolution of Robotics; What is an Industrial Robot?; Essential Characteristics; Robots and Automated Manufacturing; Project Manufacturing; Job Shop; Batch Manufacturing; Repetitive (Flow) Manufacturing; Continuous Manufacturing; Robot Safety
Learning Objectives:
- Identify why robots did not appear in large numbers in manufacturing until the late 1970s.
- State the Robot Industries Association’s definition of an industrial robot and explain the two key words.
- Describe how industrial robots are used in batch production systems.
- Explain how industrial robots are used in repetitive manufacturing systems that utilize transfer lines.
- List at least three factors that should be considered as part of a risk assessment when a robot system is in the development stage.
- Describe and contrast the following guarding methods: barrier, presence-sensing device, awareness device, warning system.
- Define the term zero-energy state.
Lesson 2 - The Basic Robot System
Topics:
Manufacturing and Robot Systems; Robot Arm; Robot Controller; Power Source; Tooling; Teaching/Programming Device; Data Storage; Definition of Terms; Critical Specifications; Payload; Degrees of Freedom; Drive Power; Repeatability; Accuracy; Work Envelope Dimensions; Speed; Memory Capacity; Programming Support; End-of-Arm Tooling; Environmental Requirements
Learning Objectives:
- Name and describe the basic building blocks of an industrial robot.
- Name and describe the additional components that make up a robot system.
- Define the following robot terms: degrees of freedom, position axes, orientation axes, work envelope, tool center point.
- Define and give an example of the following specifications for industrial robots: payload, repeatability, memory capacity, and environmental requirements.
- Explain the difference between accuracy and repeatability in robots.
Lesson 3 - Robot Classification I
Topics:
Robot classification; Classification by control system; Open-loop control; Nonservo operation; Advantages of open-loop control; Disadvantages of open-loop control; Applications for open-loop control; Closed-loop control; Advantages of closed-loop control; Disadvantages of closed-loop control; Applications for closed-loop control; Classification by application
Learning Objectives:
- Identify the five methods of classifying industrial robots.
- Explain the difference between robots with closed-loop control and those with open-loop control.
- Describe the techniques used in closed- and open-loop control in robot systems.
- List the advantages and disadvantages of open-and closed-loop control in robot systems.
- Distinguish between assembly and nonassembly robots according to the application for which they were designed.
Lesson 4 - Robot Classification II
Topics:
Classification by arm geometry; Cartesian (rectangular) arm geometry; Cylindrical arm geometry; Spherical (polar) arm geometry; Articulated arm geometry; Classification by power source; Classification by path control; Classification by intelligence level
Learning Objectives:
- Classify robots by arm geometry, power source, and path control techniques.
- Identify the basic robot work envelopes and name the arm geometries that produce them.
- Name the basic power sources used for robot motion and give an advantage and disadvantage of each.
- Identify the basic path-control techniques and describe their characteristics.
Lesson 5 - Work-Cell Sensors
Topics:
Sensor overview; Simple contact sensors; Simple noncontact sensors; Simple process control sensors; Complex sensors; Complex sensor interface; Complex contact sensors; Complex noncontact sensors; Complex process control sensors
Learning Objectives:
- List the two types of interfaces and three groups of sensors used in industrial robot systems.
- Describe the primary simple contact sensor commonly found in robot systems.
- Identify and explain the operation of the two simple noncontact sensors most often used in industrial robot installations.
- Explain the difference between the simple sensor interface and complex sensor interface.
- Identify and describe vision and tactile sensors and the systems required to support them.
Lesson 6 - End-of-Arm Tooling
Topics:
General requirements; Tooling terms; Tooling power sources; Tooling overview; Standard grippers; Servo or nonservo grippers; Vacuum devices; Magnetic devices; Flexible pneumatic devices; Special-purpose tooling; Protecting end-of-arm tooling; Compliance
Learning Objectives:
- Name the five general requirements all tooling must satisfy.
- Identify and describe briefly the four basic tooling power sources.
- Describe the five categories of end-of-arm tooling used in robot applications.
- Explain the function and advantages of a quick-change device.
- Define the term compliance and explain why it is important.
Lesson 7 - Robot Teaching and Programming
Topics:
Work-cell programming; Controller functions; Robot programming; On-line programming; On-line programming example; Off-line programming; Defining programmed points; Writing program statements; Work cell control with a PLC; PLC programming example
Learning Objectives:
- List and describe the four basic functions of the computer(s) controlling an automated work cell.
- Name the two major types of robot programming and give advantages and disadvantages of each.
- Name and describe two basic methods of teach programming and tell when each is used.
- List three advantages of off-line programming.
- Name the two elements of a computer program for off-line robot programming.
- Explain the basics of ladder logic programming.